Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Sci ; 13: e18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572365

RESUMO

Lipid emulsions are essential components of parenteral nutrition solutions that provide energy and essential fatty acids. The complexity of the formulations of lipid emulsions may lead to adverse outcomes such as platelet reactivity and changes in platelet aggregation and related coagulation. Platelets are responsible for haemostasis; they activate and demonstrate morphological changes upon extracellular factors to maintain blood fluidity and vascular integrity. Although parenteral nutrition lipid emulsions are generally found safe with regard to modulation of platelet activity, studies are still accumulating. Thus, this review aims to investigate platelet-related changes by parenteral nutrition lipid emulsions in human studies. Studies have pointed out patients at risk of bleeding and increased platelet aggregation responses due to the administration of lipid emulsions. Lipid emulsions may further benefit patients at high risk of thrombosis due to anti-thrombotic effects and should be cautiously used in patients with thrombocytopenia. The reported platelet-related changes might be associated with the fatty acid change in the plasma membranes of platelets following changes in platelet synthesis and plasma levels of eicosanoids. In conclusion, studies investigating platelets and parenteral nutrition should be supported to minimize the adverse effects and to benefit from the potential protective effects of parenteral nutrition lipid emulsions.


Assuntos
Ácidos Graxos , Nutrição Parenteral , Humanos , Emulsões , Nutrição Parenteral/efeitos adversos , Eicosanoides
2.
Food Sci Nutr ; 11(11): 6920-6930, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970433

RESUMO

Quinoa (Chenopodium quinoa Willd.) is a pseudocereal with rich nutritional composition, gluten free, and organoleptic. The primary aim of this study was to elucidate the possible protective roles of quinoa in glucose homeostasis in a model of cafeteria diet-induced obesity. Male Wistar rats (3 weeks of age) were randomly allocated to be fed by; control chow (CON; n = 6), quinoa (QUI; n = 6), cafeteria (CAF; n = 6), or quinoa and cafeteria (CAFQ; n = 6) for 15 weeks. CAFQ resulted in decreased saturated fat, sugar, and sodium intake in comparison with CAF. Compared to CON, CAF increased body weight gain, plasma insulin, plasma glucose, decreased liver IRS-1, AMPK mRNA expressions, and pancreatic ß-cell insulin immunoreactivity, and developed hepatocyte degeneration and microvesicular steatosis. Compared to CAF, QUI lowered body weight, plasma glucose, and plasma insulin, increased liver IRS-1 and AMPK mRNA expressions, and pancreatic ß-cell insulin immunoreactivity. Compared to CAF, CAFQ lowered plasma glucose, increased liver IRS-1 mRNA expressions, increased pancreatic ß-cell insulin immunoreactivity, and lowered hepatocyte degeneration and microvesicular steatosis. Dietary treatments did not influence IRS-2, AKT2, and INSR mRNA expressions. HOMA-IR, HOMA-ß, and QUICKI were also similar between groups. Restoration of insulin in CAFQ islets was as well as that of CON and QUI groups. In conclusion, as a functional food, quinoa may be useful in the prevention of obesity and associated metabolic outcomes such as glucose intolerance, disrupted pancreatic ß-cell function, hepatic insulin resistance, and lipid accumulation.

3.
Nutrition ; 79-80: 110954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32862122

RESUMO

OBJECTIVES: The aim of this study was to investigate the uncertain effects of high saturated fatty acids (SFAs) or fructose intake on cholesterol and lipoproteins with an insight of proprotein convertase subtilisin/kexin type 9 (PCSK9)- and cluster of differentiation 36 (CD36)-induced mechanisms. METHODS: Forty male C57 BL/6 mice (8 wks of age) were divided into four groups and fed ad libitum with standard chow or three isocaloric diets containing high SFAs (SFA group), monounsaturated fatty acids (MUFA group, vehicle), or fructose for 15 wks. Subsequently, mice were sacrificed and blood, liver, and heart were collected for further analysis. RESULTS: Consequently, fructose or SFA intake resulted in higher plasma and liver total cholesterol (TC) levels, plasma low-density lipoprotein cholesterol (LDL-C), non-high-density lipoprotein cholesterol (HDL-C), apolipoprotein (Apo)-B levels, TC/HDL-C, and LDL-C/HDL-C ratios, and lower plasma levels of HDL-C and Apo-A1 (P < 0.05). Levels of 3-hydroxy-3-methylglutaryl-CoA reductase and acetyl-CoA acetyltransferase 1 enzymes in liver and CD36 levels in plasma were elevated by high SFAs and fructose intake (P < 0.05), whereas plasma PCSK9 levels were not significantly changed. Fructose and SFA intake increased PCSK9 and CD36 levels in the heart, along with increased CD36 levels in the liver (P < 0.05). Furthermore, plasma LDL-C was found to be positively correlated with liver PCSK9 (r = 0.85, P = 0.02), and CD36 (r = 0.70, P = 0.02) in the SFA and fructose groups. CONCLUSION: High intakes of dietary SFAs and fructose might induce dysregulations in the cholesterol synthesis and blood lipoprotein levels via proposed nutrient-sensitive biomarkers PCSK9 and CD36 in liver and extrahepatic tissues involved in cholesterol homeostasis.


Assuntos
Ácidos Graxos , Pró-Proteína Convertase 9 , Animais , Colesterol , Dieta , Frutose/efeitos adversos , Lipoproteínas , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
Nutr Neurosci ; 23(3): 210-220, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29961406

RESUMO

The influence of HFCS (high fructose corn syrup - free fructose) and sucrose (bound fructose) on fetal appetite signals is unknown. This study aimed to determine the effects of HFCS or sucrose on the peptide-mediated appetite regulation in fetal programming of obesity. Sprague Dawley female rats were administered feed and plain water (control) or water containing maltodextrin (vehicle), sucrose, fructose, or HFCS (20%, w/v) for 12 weeks before mating and throughout pregnancy and lactation (ndams = 31; npups = 207). Maternal chow-feed consumption in the HFCS and sucrose groups and sugar-added drink consumption in the HFCS group were higher compared to the vehicle and control groups (P < 0.05). The total body fat accumulated in sucrose, fructose, and HFCS groups in dams and pups was higher than those in the vehicle and control groups (P < 0.05). The HFCS groups showed lower plasma leptin levels and higher ghrelin levels. Soluble CD36 levels in plasma and tongue samples were high in HFCS groups of dams and pups (P < 0.05). Rather than bound fructose, the free fructose from the maternal diet contributes to the programming of obesity through the disruption of leptin, ghrelin, and CD36 expression involved in appetite regulation.


Assuntos
Antígenos CD36/fisiologia , Açúcares da Dieta/administração & dosagem , Desenvolvimento Fetal/fisiologia , Grelina/fisiologia , Leptina/fisiologia , Obesidade/etiologia , Animais , Regulação do Apetite/fisiologia , Antígenos CD36/análise , Sacarose Alimentar/administração & dosagem , Feminino , Frutose/administração & dosagem , Grelina/sangue , Leptina/sangue , Fenômenos Fisiológicos da Nutrição Materna , Distrofias Neuroaxonais , Osteopetrose , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA